Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Calcif Tissue Int ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733412

RESUMO

Autosomal dominant osteopetrosis type 2 (ADO2) is a rare inherited bone disorder characterised by dense but brittle bones. It displays striking phenotypic variability, with the most severe symptoms, including blindness and bone marrow failure. Disease management largely relies on symptomatic treatment since there is no safe and effective treatment. Most ADO2 cases are caused by heterozygous loss-of-function mutations in the CLCN7 gene, which encodes an essential Cl-/H+ antiporter for proper bone resorption by osteoclasts. Thus, siRNA-mediated silencing of the mutant allele is a promising therapeutic approach, but targeting bone for first-in-human translation remains challenging. Here, we demonstrate the utility of silicon-stabilised hybrid lipid nanoparticles (sshLNPs) as a next-generation nucleic acid nanocarrier capable of delivering allele-specific siRNA to bone. Using a Clcn7G213R knock-in mouse model recapitulating one of the most common human ADO2 mutations and based on the 129S genetic background (which produces the most severe disease phenotype amongst current models), we show substantial knockdown of the mutant allele in femur when siRNA targeting the pathogenic variant is delivered by sshLNPs. We observed lower areal bone mineral density in femur and reduced trabecular thickness in femur and tibia, when siRNA-loaded sshLNPs were administered subcutaneously (representing the most relevant administration route for clinical adoption and patient adherence). Importantly, sshLNPs have improved stability over conventional LNPs and enable 'post hoc loading' for point-of-care formulation. The treatment was well tolerated, suggesting that sshLNP-enabled gene therapy might allow successful clinical translation of essential new treatments for ADO2 and potentially other rare genetic bone diseases.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38661205

RESUMO

CONTEXT: Autosomal dominant osteopetrosis (ADO) is a rare sclerotic bone disease characterized by impaired osteoclast activity, resulting in high bone mineral density and skeletal fragility. The full phenotype and disease burden on patients' daily lives has not been systematically measured. OBJECTIVE: We developed an online registry to ascertain population-based data on the spectrum and rate of progression of disease and to identify relevant patient centered outcomes that could be used to measure treatment effects and guide the design of future clinical trials. DESIGN: Cross-sectional data from participants with osteopetrosis were collected using an online REDCap-based database. PARTICIPANTS: Thirty-four participants with a confirmed diagnosis of ADO, aged 4-84 years. MAIN OUTCOME MEASURES: Participants aged 18 years and older completed the PROMIS 57, participants aged 8 to 17 years completed the PROMIS Pediatric 49, and parents of participants aged <18 years completed the PROMIS Parent Proxy 49. RESULTS: Based on the PROMIS 57, relative to the general population, adults with ADO reported low physical function and low ability to participate in social roles and activities, and high levels of anxiety, fatigue, sleep problems, and pain interference. Daily pain medications were reported by 24% of the adult population. In contrast, neither pediatric participants, nor their parent proxy reported a negative impact on health-related quality of life. CONCLUSIONS: Data from this registry demonstrate the broad spectrum of ADO disease severity and high impact on health-related quality of life in adults with ADO.

3.
Calcif Tissue Int ; 114(4): 430-443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483547

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption caused by heterozygous missense mutations in the chloride channel 7 (CLCN7). Adenylate cyclase, which catalyzes the formation of cAMP, is critical for lysosomal acidification in osteoclasts. We found reduced cAMP levels in ADO2 osteoclasts compared to wild-type (WT) osteoclasts, leading us to examine whether regulating cAMP would improve ADO2 osteoclast activity. Although forskolin, a known activator of adenylate cyclase and cAMP levels, negatively affected osteoclast number, it led to an overall increase in ADO2 and WT osteoclast resorption activity in vitro. Next, we examined cAMP hydrolysis by the phosphodiesterase 4 (PDE4) proteins in ADO2 versus WT osteoclasts. QPCR analysis revealed higher expression of the three major PDE4 subtypes (4a, 4b, 4d) in ADO2 osteoclasts compared in WT, consistent with reduced cAMP levels in ADO2 osteoclasts. In addition, we found that the PDE4 antagonists, rolipram and roflumilast, stimulated ADO2 and WT osteoclast formation in a dose-dependent manner. Importantly, roflumilast and rolipram displayed a concentration-dependent increase in osteoclast resorption activity which was greater in ADO2 than WT osteoclasts. Moreover, treatment with roflumilast rescued cAMP levels in ADO2 OCLs. The key findings from our studies demonstrate that osteoclasts from ADO2 mice exhibit reduced cAMP levels and PDE4 inhibition rescues cAMP levels and ADO2 osteoclast activity dysfunction in vitro. The mechanism of action of PDE4 inhibitors and their ability to reduce the high bone mass of ADO2 mice in vivo are currently under investigation. Importantly, these studies advance the understanding of the mechanisms underlying the ADO2 osteoclast dysfunction which is critical for the development of therapeutic approaches to treat clinically affected ADO2 patients.


Assuntos
Aminopiridinas , Benzamidas , Reabsorção Óssea , Inibidores da Fosfodiesterase 4 , Humanos , Camundongos , Animais , Rolipram/farmacologia , Rolipram/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/metabolismo , Osteoclastos/metabolismo , Adenilil Ciclases/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Canais de Cloreto/genética , Ciclopropanos
4.
Calcif Tissue Int ; 114(4): 419-429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300304

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a rare bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We previously created mouse models of ADO2 (p.G213R) with one of the most common mutations (G215R) as found in humans and demonstrated that this mutation in mice phenocopies the human disease of ADO2. Previous studies have shown that roflumilast (RF), a selective phosphodiesterase 4 (PDE4) inhibitor that regulates the cAMP pathway, can increase osteoclast activity. We also observed that RF increased bone resorption in both wild-type and ADO2 heterozygous osteoclasts in vitro, suggesting it might rescue bone phenotypes in ADO2 mice. To test this hypothesis, we administered RF-treated diets (0, 20 and 100 mg/kg) to 8-week-old ADO2 mice for 6 months. We evaluated bone mineral density and bone micro-architecture using longitudinal in-vivo DXA and micro-CT at baseline, and 6-, 12-, 18-, and 24-week post-baseline time points. Additionally, we analyzed serum bone biomarkers (CTX, TRAP, and P1NP) at baseline, 12-, and 24-week post-baseline. Our findings revealed that RF treatment did not improve aBMD (whole body, femur, and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group treated with a normal diet. Furthermore, we did not observe any significant changes in serum levels of bone biomarkers due to RF treatment in these mice. Overall, our results indicate that RF does not rescue the osteopetrotic bone phenotypes in ADO2 heterozygous mice.


Assuntos
Aminopiridinas , Benzamidas , Reabsorção Óssea , Osteopetrose , Inibidores da Fosfodiesterase 4 , Humanos , Animais , Camundongos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Inibidores da Fosfodiesterase 4/metabolismo , Fenótipo , Biomarcadores , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Osteopetrose/genética , Canais de Cloreto/genética , Ciclopropanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38261998

RESUMO

CONTEXT: Autosomal dominant osteopetrosis (ADO) is a rare genetic disorder due to impaired osteoclastic bone resorption. Clinical manifestations frequently include fractures, osteonecrosis (particularly of the jaw or maxilla), osteomyelitis, blindness, and/or bone marrow failure. ADO usually results from heterozygous missense variants in the Chloride Channel 7 gene (CLCN7) that cause disease by a dominant negative mechanism. Variants in the T cell immune regulator 1 gene (TCIRG1) are commonly identified in autosomal recessive osteopetrosis but have only been reported in one patient with ADO. CASE DESCRIPTION: Here we report 3 family members with a single heterozygous missense variant (p.Gly579Arg) in TCIRG1 who have a phenotype consistent with ADO. Three of five protein prediction programs suggest this variant likely inhibits the function of TCIRG1. CONCLUSIONS: This is the first description of adult presentation of ADO caused by a TCIRG1 variant. Similar to families with ADO from CLCN7 mutations, this variant in TCIRG1 results in marked phenotype variability, with two subjects having severe disease and the third having very mild disease. This family report implicates TCIRG1 missense mutations as a cause of ADO and demonstrates that the marked phenotypic variability in ADO may extend to disease caused by TCIRG1 missense mutations.

6.
Bone ; 170: 116723, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863500

RESUMO

Autosomal dominant osteopetrosis (ADO) is the most common form of osteopetrosis. ADO is characterized by generalized osteosclerosis along with characteristic radiographic features such as a "bone-in-bone" appearance of long bones and sclerosis of the superior and inferior vertebral body endplates. Generalized osteosclerosis in ADO typically results from abnormalities in osteoclast function, due most commonly to mutations in the chloride channel 7 (CLCN7) gene. A variety of debilitating complications can occur over time due to bone fragility, impingement of cranial nerves, encroachment of osteopetrotic bone in the marrow space, and poor bone vascularity. There is a wide spectrum of disease phenotype, even within the same family. Currently, there is no disease specific treatment for ADO, so clinical care focuses on monitoring for disease complications and symptomatic treatment. This review describes the history of ADO, the wide disease phenotype, and potential new therapies.


Assuntos
Osteopetrose , Humanos , Osteopetrose/diagnóstico por imagem , Osteopetrose/genética , Mutação/genética , Osteoclastos , Canais de Cloreto/genética , Genes Dominantes
7.
AACE Clin Case Rep ; 8(5): 217-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189136

RESUMO

Background/Objective: Pemigatinib, a fibroblast growth factor receptor (FGFR) 1-3 inhibitor, is a novel therapeutic approach for treating cholangiocarcinoma when an FGFR fusion or gene rearrangement is identified. Although the most reported side effect of pemigatinib is hyperphosphatemia, tumoral calcinosis with soft tissue calcifications is not widely recognized as a complication. We report a case of patient with hyperphosphatemic tumoral calcinosis on pemigatinib. Case Report: A 59-year-old woman with progressive metastatic cholangiocarcinoma, despite receiving treatment with cisplatin and gemcitabine for 7 months, was found to have an FGFR2-BICC1 fusion in the tumor on next-generation sequencing. Pemigatinib was, therefore, initiated. Four months into the therapy, multiple subcutaneous nodules developed over the lower portion of her back, hips, and legs. Punch biopsies revealed deep dermal and subcutaneous calcifications. Investigations revealed elevated serum phosphorus (7.5 mg/dL), normal serum calcium (8.7 mg/dL), and elevated intact fibroblast growth factor-23 (FGF23, 1216 pg/mL; normal value <59 pg/mL) levels. Serum phosphorus levels improved with a low-phosphorus diet and sevelamer. Calcifications regressed with pemigatinib discontinuation. Discussion: Inhibition or deficiency of FGF-23 results in hyperphosphatemia and can lead to ectopic calcification. Pemigatinib, a potent inhibitor of FGFR-1-3, blocks the effect of FGF-23 leading to hyperphosphatemia and tumoral calcinosis as observed in our case. Treatment is aimed primarily at lowering serum phosphate levels through dietary restriction or phosphate binders; however, the regression of tumoral calcinosis can occur with pemigatinib cessation, as seen in this case. Conclusion: As the use of FGFR 1-3 inhibitors becomes more prevalent, we aim to raise attention to the potential side effects of tumoral calcinosis.

8.
FASEB J ; 36(9): e22471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35959867

RESUMO

Autosomal dominant osteopetrosis type II (ADO2) is a heritable bone disease of impaired osteoclastic bone resorption caused by missense mutations in the chloride channel 7 (CLCN7) gene. Clinical features of ADO2 include fractures, osteomyelitis of jaw, vision loss, and in severe cases, bone marrow failure. Currently, there is no effective therapy for ADO2, and patients usually receive symptomatic treatments. Theoretically, bone marrow transplantation (BMT), which is commonly used in recessive osteopetrosis, could be used to treat ADO2, although the frequency of complications related to BMT is quite high. We created an ADO2 knock-in (p.G213R mutation) mouse model on the 129 genetic background, and their phenotypes mimic the human disease of ADO2. To test whether BMT could restore osteoclast function and rescue the bone phenotypes in ADO2 mice, we transplanted bone marrow cells from 6-8 weeks old male WT donor mice into recipient female ADO2 mice. Also, to determine whether age at the time of transplant may play a role in transplant success, we performed BMT in young (12-week-old) and old (9-month-old) ADO2 mice. Our data indicate that ADO2 mice transplanted with WT marrow achieved more than 90% engraftment up to 6 months post-transplantation at both young and old ages. The in-vivo DXA data revealed that young ADO2 mice transplanted with WT marrow had significantly lower whole body and spine areal bone mineral density (aBMD) at month 6 post-transplantation compared to the ADO2 control mice. The old ADO2 mice also displayed significantly lower whole body, femur, and spine aBMD at months 4 and 5 post-transplantation compared to the age-matched control mice. The in-vivo micro-CT data showed that ADO2 experimental mice transplanted with WT marrow had significantly lower BV/TV at months 2 and 4 post-transplantation compared to the ADO2 control mice at a young age. In contrast, ADO2 control and experimental mice displayed similar BV/TV values for all post-transplantation time points at old age. In addition, serum CTX was significantly higher at month 2 post-transplantation in both young and old ADO2 experimental mice compared to the ADO2 control mice. Serum P1NP levels in young ADO2 experimental mice were significantly higher at baseline and month 2 post-transplantation compared to the ADO2 control mice. These data suggest that BMT may provide, at least, some beneficial effect at both young and adult ages.


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Biomarcadores , Transplante de Medula Óssea , Canais de Cloreto/genética , Feminino , Humanos , Lactente , Masculino , Camundongos , Osteoclastos , Osteopetrose/genética , Osteopetrose/terapia
10.
JBMR Plus ; 6(6): e10616, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35720663

RESUMO

The osteopetroses are a group of rare genetic diseases caused by osteoclast dysfunction or absence. The hallmark of osteopetrosis is generalized increased bone mineral density (BMD). However, the bone is fragile and fractures are common. Autosomal recessive osteopetrosis is usually a severe disorder and often life-threatening in childhood. We present male siblings with autosomal recessive osteopetrosis due to biallelic variants in TCIRG1 who survived childhood and underwent hematopoietic stem cell transplant (HSCT) in adulthood. One sibling died of posttransplant complications. After transplant, the other sibling had improvement of multiple clinical parameters, including some decline in BMD Z-scores by dual-energy X-ray absorptiometry (DXA) and cessation of fractures. However, spine quantitative computed tomography 11 years after transplant demonstrated an anvil pattern of sclerosis with BMD Z-score of +18.3. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the tibia demonstrated near complete obliteration of the marrow space combined with an unusual cortical phenotype, suggesting extensive cortical porosity at the distal tibia. This case highlights that despite successful transplantation and subsequent improvement in clinical parameters, this patient continued to have significantly elevated bone density and decreased marrow space. Transplant-associated increased cortical porosity is multifactorial and occurs in two-thirds of non-osteopetrotic patients undergoing HSCT. This finding after transplant in osteopetrosis may suggest particular sensitivity of the cortical bone to resorptive activity of transplanted osteoclasts. The case also suggests HR-pQCT may be a useful modality for imaging and assessing the therapeutic effects on bone in individuals with osteopetrosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Hum Mutat ; 43(2): 143-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806794

RESUMO

X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemia, is caused by disrupting variants in the PHEX gene, located on the X chromosome. XLH is inherited in an X-linked pattern with complete penetrance observed for both males and females. Patients experience lifelong symptoms resulting from chronic hypophosphatemia, including impaired bone mineralization, skeletal deformities, growth retardation, and diminished quality of life. This chronic condition requires life-long management with disease-specific therapies, which can improve patient outcomes especially when initiated early in life. To centralize and disseminate PHEX variant information, we have established a new PHEX gene locus-specific database, PHEX LSDB. As of April 30, 2021, 870 unique PHEX variants, compiled from an older database of PHEX variants, a comprehensive literature search, a sponsored genetic testing program, and XLH clinical trials, are represented in the PHEX LSDB. This resource is publicly available on an interactive, searchable website (https://www.rarediseasegenes.com/), which includes a table of variants and associated data, graphical/tabular outputs of genotype-phenotype analyses, and an online submission form for reporting new PHEX variants. The database will be updated regularly with new variants submitted on the website, identified in the published literature, or shared from genetic testing programs.


Assuntos
Bases de Dados Genéticas , Raquitismo Hipofosfatêmico Familiar , Doenças Genéticas Ligadas ao Cromossomo X , Hipofosfatemia , Endopeptidase Neutra Reguladora de Fosfato PHEX , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Hipofosfatemia/genética , Masculino , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Qualidade de Vida
12.
Bone ; 153: 116160, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464779

RESUMO

Autosomal Dominant Osteopetrosis type II (ADO2) is a bone disease of impaired osteoclastic bone resorption that usually results from heterozygous missense mutations in the chloride channel 7 (CLCN7) gene. We created mouse models of ADO2 by introducing a knock-in (p.G213R) mutation in the Clcn7 gene, which is analogous to one of the common mutations (G215R) found in humans. The mutation leads to severe osteopetrosis and lethality in homozygous mice but produces substantial phenotypic variability in heterozygous mice on different genetic backgrounds that phenocopy the human disease of ADO2. ADO2 is an osteoclast-intrinsic disease, and lysosomal enzymes and proteins are critical for osteoclast activity. Chloroquine (CQ) is known to affect lysosomal trafficking, intracellular signaling and the lysosomal and vesicular pH, suggesting it might improve ADO2 osteoclast function. We tested this hypothesis in cell culture studies using osteoclasts derived from wild-type (WT or ADO2+/+) and ADO2 heterozygous (ADO2+/-) mice and found that CQ and its metabolite desethylchloroquine (DCQ), significantly increased ADO2+/- osteoclasts bone resorption activity in vitro, whereas bone resorption of ADO2+/+ osteoclasts was increased only by DCQ. In addition, we exploited our unique animal model of ADO2 on 129 background to identify the effect of CQ for the treatment of ADO2. Female ADO2 mice at 8 weeks of age were treated with 5 doses of CQ (1, 2.5, 5, 7.5 and 10 mg/kg BW/day) via drinking water for 6 months. Bone mineral density and bone micro-architecture were analyzed by longitudinal in vivo DXA and micro-CT at baseline, 3 and 6 months. Serum bone biomarkers (CTX, TRAP and P1NP) were also analyzed at these time points. CQ treatment at the doses tested failed to produce any significant changes of aBMD, BMC (whole body, femur and spine) and trabecular BV/TV (distal femur) in ADO2 mice compared to the control group (water only). Further, levels of bone biomarkers were not significantly changed due to CQ treatment in these mice. Our findings indicate that while CQ increased osteoclast activity in vitro, it did not improve the osteopetrotic bone phenotypes in ADO2 heterozygous mice.


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos , Cloroquina/farmacologia , Feminino , Camundongos , Osteoclastos , Osteopetrose/tratamento farmacológico , Osteopetrose/genética , Fenótipo
13.
Skeletal Radiol ; 50(5): 903-913, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33009917

RESUMO

OBJECTIVE: To characterize relationships between quantitative computed tomography bone mineral density measurements and other qualitative and quantitative imaging measures, as well as clinical metrics, in patients with autosomal dominant osteopetrosis type 2 (ADO2). MATERIALS AND METHODS: Clinical and radiologic parameters of 9 adults and 3 children with autosomal dominant osteopetrosis type 2 were assessed including lumbar spine quantitative computed tomography (QCT), radiographic skeletal survey (skull base thickening; Erlenmeyer flask deformity; endobone pattern; and spine density pattern (endplate sclerosis, "anvil" appearance, or diffuse sclerosis)), dual-energy x-ray absorptiometry (DXA), tibial peripheral quantitative computed tomography (pQCT) volumetric bone mineral density (vBMD), bone turnover markers, and bone marrow failure or visual impairment. RESULTS: The skeletal parameter most divergent from normal was lumbar spine QCT Z-score (+ 3.6 to + 38.7). Lumbar QCT Z-score correlated positively with pQCT tibial diaphysis vBMD (Pearson correlation r = 0.73, p = 0.02) and pQCT tibial metaphysis vBMD (r = 0.87, p < 0.01). A trend towards positive lumbar QCT Z-score correlation with serum P1NP/CTX ratio (r = 0.54, p = 0.10) and lumbar DXA Z-score (r = 0.55, p = 0.10) were observed. Bone marrow failure and vision impairment occurred in those with most severe quantitative and qualitative measures, while those with less severe radiographic features had the lowest QCT Z-scores. CONCLUSION: Lumbar spine QCT provided the most extreme skeletal assessment in ADO2, which correlated positively with other radiologic and clinical markers of disease severity. Given the quantification of trabecular bone and greater variation from normal with wider range of values, lumbar QCT Z-scores may be useful to determine or detect impact of future treatments.


Assuntos
Osteopetrose , Absorciometria de Fóton , Adulto , Densidade Óssea , Osso e Ossos , Criança , Humanos , Vértebras Lombares/diagnóstico por imagem , Osteopetrose/diagnóstico por imagem , Osteopetrose/genética , Índice de Gravidade de Doença
14.
JAMA ; 323(5): 432-443, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32016310

RESUMO

Importance: Intravenous iron enables rapid correction of iron-deficiency anemia, but certain formulations induce fibroblast growth factor 23-mediated hypophosphatemia. Objective: To compare risks of hypophosphatemia and effects on biomarkers of mineral and bone homeostasis of intravenous iron isomaltoside (now known as ferric derisomaltose) vs ferric carboxymaltose. Design, Setting, and Participants: Between October 2017 and June 2018, 245 patients aged 18 years and older with iron-deficiency anemia (hemoglobin level ≤11 g/dL; serum ferritin level ≤100 ng/mL) and intolerance or unresponsiveness to 1 month or more of oral iron were recruited from 30 outpatient clinic sites in the United States into 2 identically designed, open-label, randomized clinical trials. Patients with reduced kidney function were excluded. Serum phosphate and 12 additional biomarkers of mineral and bone homeostasis were measured on days 0, 1, 7, 8, 14, 21, and 35. The date of final follow-up was June 19, 2018, for trial A and May 29, 2018, for trial B. Interventions: Intravenous administration of iron isomaltoside, 1000 mg, on day 0 or ferric carboxymaltose, 750 mg, infused on days 0 and 7. Main Outcomes and Measures: The primary end point was the incidence of hypophosphatemia (serum phosphate level <2.0 mg/dL) between baseline and day 35. Results: In trial A, 123 patients were randomized (mean [SD] age, 45.1 [11.0] years; 95.9% women), including 62 to iron isomaltoside and 61 to ferric carboxymaltose; 95.1% completed the trial. In trial B, 122 patients were randomized (mean [SD] age, 42.6 [12.2] years; 94.1% women), including 61 to iron isomaltoside and 61 to ferric carboxymaltose; 93.4% completed the trial. The incidence of hypophosphatemia was significantly lower following iron isomaltoside vs ferric carboxymaltose (trial A: 7.9% vs 75.0% [adjusted rate difference, -67.0% {95% CI, -77.4% to -51.5%}], P < .001; trial B: 8.1% vs 73.7% [adjusted rate difference, -65.8% {95% CI, -76.6% to -49.8%}], P < .001). Beyond hypophosphatemia and increased parathyroid hormone, the most common adverse drug reactions (No./total No.) were nausea (iron isomaltoside: 1/125; ferric carboxymaltose: 8/117) and headache (iron isomaltoside: 4/125; ferric carboxymaltose: 5/117). Conclusions and Relevance: In 2 randomized trials of patients with iron-deficiency anemia who were intolerant of or unresponsive to oral iron, iron isomaltoside (now called ferric derisomaltose), compared with ferric carboxymaltose, resulted in lower incidence of hypophosphatemia over 35 days. However, further research is needed to determine the clinical importance of this difference. Trial Registration: ClinicalTrials.gov Identifiers: NCT03238911 and NCT03237065.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Dissacarídeos/efeitos adversos , Compostos Férricos/efeitos adversos , Hematínicos/efeitos adversos , Hipofosfatemia/induzido quimicamente , Maltose/análogos & derivados , Adulto , Anemia Ferropriva/complicações , Biomarcadores/sangue , Biomarcadores/urina , Dissacarídeos/uso terapêutico , Feminino , Compostos Férricos/uso terapêutico , Cefaleia/induzido quimicamente , Hematínicos/uso terapêutico , Humanos , Hipofosfatemia/epidemiologia , Incidência , Masculino , Maltose/efeitos adversos , Maltose/uso terapêutico , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Fosfatos/sangue , Fosfatos/urina
15.
J Bone Miner Res ; 35(2): 231-238, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652009

RESUMO

Autosomal dominant hypophosphatemic rickets (ADHR) is caused by mutations impairing cleavage of fibroblast growth factor 23 (FGF23). FGF23 gene expression increases during iron deficiency. In humans and mice with the ADHR mutation, iron deficiency results in increased intact FGF23 concentrations and hypophosphatemia. We conducted a prospective open label pilot clinical trial of oral iron replacement over 12 months in ADHR patients to test the hypothesis that oral iron administration would normalize FGF23 concentrations. Eligibility criteria included: FGF23 mutation; and either serum iron <50 µg/dL; or serum iron 50 to 100 µg/dL combined with hypophosphatemia and intact FGF23 >30 pg/mL at screening. Key exclusion criteria were kidney disease and pregnancy. Oral iron supplementation started at 65 mg daily and was titrated based on fasting serum iron concentration. The primary outcome was decrease in fasting intact FGF23 by ≥20% from baseline. Six adults (three male, three female) having the FGF23-R176Q mutation were enrolled; five completed the 12-month protocol. At baseline three of five subjects had severely symptomatic hypophosphatemia (phosphorus <2.5 mg/dL) and received calcitriol with or without phosphate concurrent with oral iron during the trial. The primary outcome was met by 4 of 5 (80%) subjects all by month 4, and 5 of 5 had normal intact FGF23 at month 12. Median (minimum, maximum) intact FGF23 concentration decreased from 172 (20, 192) pg/mL at baseline to 47 (17, 78) pg/mL at month 4 and 42 (19, 63) pg/mL at month 12. Median ferritin increased from 18.6 (7.7, 82.5) ng/mL at baseline to 78.0 (49.6, 261.0) ng/mL at month 12. During iron treatment, all three subjects with baseline hypophosphatemia normalized serum phosphorus, had markedly improved symptoms, and were able to discontinue calcitriol and phosphate. Oral iron repletion normalized FGF23 and phosphorus in symptomatic, iron-deficient ADHR subjects. Thus, the standard approach to ADHR should include recognition, treatment, and prevention of iron deficiency. © 2019 American Society for Bone and Mineral Research.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Adulto , Idoso , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Humanos , Ferro , Masculino , Pessoa de Meia-Idade , Fosfatos , Estudos Prospectivos
16.
JBMR Plus ; 3(4): e10084, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31044183

RESUMO

Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.

17.
J Bone Miner Res ; 34(8): 1436-1445, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30889272

RESUMO

In autosomal dominant osteopetrosis type 2 (ADO2) CLCN7 mutations cause impaired osteoclast function. Severe consequences include skeletal fragility despite high bone mass, osteomyelitis, osteonecrosis, bone marrow failure, and severe cranial nerve impingement. There is no effective medical treatment for ADO2. We recruited subjects with ADO2 into a 14-week, open-label, pilot clinical trial of interferon gamma-1b. Doses were titrated based on tolerability and if fasting serum C-telopeptide (CTX) was <25% above baseline at week 8, targeting doses of 100 µg/m2 three times a week. The primary outcomes were change from baseline in CTX and N-telopeptide/creatinine ratio (NTX/Cr) at week 14. Secondary outcomes included changes in urine calcium/creatinine ratio, bone formation markers and tolerability. Nine adults and three children were recruited. Severe manifestations of ADO2 included histories of fractures (100%), osteomyelitis (16.7%), vision loss (50%), and anemia (58.3%). Baseline CTX and NTX/Cr were generally low-normal. Procollagen type I N-terminal propeptide was elevated or in the upper-normal range in 11 of 12 (91.6%) subjects. Elevations of aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were common. One subject withdrew due to rash. Five subjects achieved doses of 50 µg/m2 3 days a week, while six reached the full dose of 100 µg/m2 3 days a week. Only 3 of 11 (27.3%) completing subjects achieved the primary outcome of increasing CTX ≥25% above baseline at week 14. The mean ± SD change from baseline in CTX at week 14 was +2.2% ± 43.2%, p = 0.86). Likewise, there was no significant change in NTX/Cr (mean change -2.1%, p = 0.81). Interferon gamma-1b was poorly tolerated. Most subjects had adverse events, and the Mental Health and Mental Component Scales of the SF-36v2 health survey declined slightly (p < 0.05). Over 14 weeks, interferon gamma-1b failed to significantly increase bone turnover markers in ADO2 and was poorly tolerated. Consequently, interferon gamma-1b is unlikely to be effective for decreasing bone mass in ADO2. © 2019 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Colágeno Tipo I/sangue , Creatinina/sangue , Interferon gama/administração & dosagem , Osteopetrose , Peptídeos/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Reabsorção Óssea/sangue , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Criança , Pré-Escolar , Feminino , Humanos , Interferon gama/efeitos adversos , Masculino , Pessoa de Meia-Idade , Osteopetrose/sangue , Osteopetrose/tratamento farmacológico , Osteopetrose/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos
18.
J Bone Miner Res ; 34(7): 1284-1296, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30888730

RESUMO

Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10-8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10-5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. © 2019 American Society for Bone and Mineral Research.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Ossos Pélvicos/anatomia & histologia , Adulto , Animais , Células Cultivadas , Osso Cortical/metabolismo , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fraturas do Quadril/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
19.
Am J Clin Nutr ; 109(2): 276-287, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721968

RESUMO

Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/genética , Compartimentos de Líquidos Corporais/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas ADAMTS/genética , Absorciometria de Fóton , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Impedância Elétrica , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/genética , Receptor Tipo 4 de Melanocortina/genética , Versicanas/genética , População Branca/genética , Adulto Jovem
20.
J Am Soc Nephrol ; 29(10): 2583-2592, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30217807

RESUMO

BACKGROUND: Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely understood; genetic variation may help explain interindividual differences. METHODS: We performed a meta-analysis of genome-wide association studies of circulating FGF23 concentrations among 16,624 participants of European ancestry from seven cohort studies, excluding participants with eGFR<30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log-transformed FGF23 concentration, adjusted for age, sex, study site, and principal components of ancestry. A second model additionally adjusted for BMI and eGFR. RESULTS: We discovered 154 SNPs from five independent regions associated with FGF23 concentration. The SNP with the strongest association, rs17216707 (P=3.0×10-24), lies upstream of CYP24A1, which encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-hydroxyvitamin D. Each additional copy of the T allele at this locus is associated with 5% higher FGF23 concentration. Another locus strongly associated with variations in FGF23 concentration is rs11741640, within RGS14 and upstream of SLC34A1 (a gene involved in renal phosphate transport). Additional adjustment for BMI and eGFR did not materially alter the magnitude of these associations. Another top locus (within ABO, the ABO blood group transferase gene) was no longer statistically significant at the genome-wide level. CONCLUSIONS: Common genetic variants located near genes involved in vitamin D metabolism and renal phosphate transport are associated with differences in circulating FGF23 concentrations.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Polimorfismo de Nucleotídeo Único , Proteínas RGS/genética , Vitamina D3 24-Hidroxilase/genética , População Negra/genética , Estudos de Coortes , Feminino , Fator de Crescimento de Fibroblastos 23 , Estudo de Associação Genômica Ampla , Humanos , Rim/metabolismo , Masculino , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Vitamina D/metabolismo , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...